
Intro to Git-Based Version Control for Industrial Automation1

Intro to Git-Based
Version Control
for Industrial
Automation

W H I T E P A P E R

Intro to Git-Based Version Control for Industrial Automation2

W H I T E P A P E R

The Value Of Version Control For Industrial
Automation
Good version control practices are essential for efficient code
development. They ensure that you, your team, and your
company can track changes to files over time, understand why
the changes were made and by who, and revert to specific
versions of code if needed. When a robust version control
system is implemented correctly, teams can focus more on the
development activities instead of searching for and investigating
code changes. As more engineers are assigned to the project
or more time passes between project activities, the benefits
of proper version control increase. Less time is required to
understand how and why a project arrived at its current state.

For an industrial automation developer, a sound version
control system will ensure you can always answer the
following questions:

•	 Where is the latest version of the PLC code, and can I access
it without calling another developer?

•	 Is this version of code the same as what’s been
deployed onto the PLC?

•	 Was the latest version reviewed/approved by the
proper people?

•	 What has changed between this file and the previous
version? Who made the change and why?

•	 Can I control access privileges for the files at different stages
of the PLC code’s lifecycle?

While there are many different types of version control systems,
this document focuses on Git, which dominates the software
industry with over 90% market share and is used by over 100
million developers.

90%

Market share
dominated by GIT.

Used by over 100 million
developers

Intro to Git-Based Version Control for Industrial Automation3

W H I T E P A P E R

How is Git Different from GitHub?
Git is an open-sourced, distributed version control tool. GitHub
is a cloud-based platform built around Git. GitHub hosts a Git
repository in the cloud, and is the most popular way people
utilize Git source control. It started as a for-profit company,
and Microsoft purchased the company in 2018. Other platforms
built around Git include GitLab, Bitbucket (Atlassian), AWS
CodeCommit, and Copia Automation. When we talk about the
popularity of Git version control, we refer to the total users of the
various Git providers and the open-source tool.

An important thing to note is that Git is often used via a
command-line interface but has a simple graphical user interface
(GUI). Most 3rd party Git providers — like GitHub and Copia,
include a more comprehensive graphical user interface that
simplifies Git tasks and, in the case of Copia, adds value when
dealing with specific file types. (For example, Copia is tailor-built
to show ladder logic and function block diagrams when working
with industrial Automation files). Copia’s diff rendering feature
sets it apart in the industrial space. Learn more here

What is Git?
Git is a mature and actively maintained open-source tool created
in 2005 by Linus Torvalds (the founder of Linux). It is now the
most widely used modern version control system globally. There
were several reasons why Git became the standard.

Git is distributed. Files and history are stored locally
and in a central repository. This characteristic enables
engineers to work without network access.

Git is fast. Since history is stored locally on your device,
changing versions is nearly instant.

Git is secure. Git uses a hashing algorithm that ensures
that every edit is traceable.knowing.

1

2

3

https://www.copia.io/key-differences-between-git-providers

Intro to Git-Based Version Control for Industrial Automation4

W H I T E P A P E R

Today’s Manual Process Is Prone To Errors
For an industrial automation professional who is not familiar
with Git, it may be easiest to understand if you compare it to
the widespread and manual practice of using an archive folder
to manage industrial automation files.

The typical Archive Folder Workflow has the following steps:

The controls engineer creates project files on their local
computer, using an installed Integrated Development
Environment (IDE) (such as Rockwell Automation®
Studio 5000 Logix Designer® or Siemens® TIA Portal).
The names of the files are often a user created mix
of a project name, version, and engineers initial (.i.e
Mixer_DAH_V1.1)

Edits are stored by overwriting the previous file (Save),
or copying and renaming the new files (Save As).

When work is completed to a significant state, the file
or entire project folder may be zipped and copied to a
central location for sharing and backup.

If another team member needs to access the files to
review or make changes, they need to download them
to their local hard drive and use their development
environment to view and edit the files.

It is not uncommon for controls engineers to
“Copy and Rename” to manage a file’s history,
resulting in a list of similar files distinguished by
file names and modification dates.

1

2

3

4

Intro to Git-Based Version Control for Industrial Automation5

W H I T E P A P E R

Unfortunately, there are many problems and limitations with this
workflow. For example:

•	 There is no inherent information on why a file was updated
or changed. Additional work is needed to document and
communicate changes.

•	 Project organization is based on manually naming files,
which is prone to human error.

•	 There is no easy way to see the difference between file
versions. Some IDEs provide this capability, but only for their
specific file types.

•	 Local files are not backed up regularly. Work is often lost,
and the latest version of a project may not be in the
archive folder.

•	 Collaboration is limited. If teammates copy the same file
from the central location and make changes, they cannot
easily merge their work.

•	 It is difficult for managers to understand the progress
made on a project since the work is usually kept on
local machines.

•	 There is no inherent method for reviewing and
approving files.

Intro to Git-Based Version Control for Industrial Automation6

W H I T E P A P E R

•	 Setting access permissions for specific files can
be challenging.

•	 For large files, copying, pasting, and eventually uploading
can take a significant amount of time. This fact may
decrease the frequency at which projects are backed up.

Git alleviates these disadvantages. A basic Git-based workflow
has many similarities to the Archive Folder Workflow workflow.
Work is done locally, changes are saved and committed to
the file’s history, and then these committed changes are
synchronized to a centralized location. There are significant
benefits as Git removes the need to copy, move, and rename
files manually. Git stores versions of the project and provides
rich context on who-what-and-why changes were made.

The Basic Git Workflow
Here are the steps of a Basic Git Workflow for an Industrial
Automation project:

A central repository is created on a server. This server
will be cloudhosted for most Git providers (GitHub,
Copia, etc.).

The repository is then cloned to the control engineer’s
local machine. It will appear on the local PC as a
standard Microsoft® Windows® folder.

The engineer creates their automation files using
their local IDE (such as Rockwell Automation Studio
5000 Logix Designer), saves the file in the local
repository, and commits these changes to the file
history when ready.

When a development milestone is reached, or the
engineer believes it is appropriate, the engineer will
push their committed changes to the central repository.

1

2

3

4

Intro to Git-Based Version Control for Industrial Automation7

W H I T E P A P E R

Meanwhile, teammates who have also cloned the
central repository locally can “pull” the updated files to
their local repository so that they are always working
with the latest files.

You can see these steps outlined in the diagram below:

A PLC file’s history can be viewed using a Git
commit graph. Notice that any previous commit
can be retreived if needed.

5

With Git, each committed
change is stored with context
and can be visualized as a
node along a main branch
of code. A simple revert
command can be used to
access previous changes.

Intro to Git-Based Version Control for Industrial Automation8

W H I T E P A P E R

There are some subtle things worth mentioning:

•	 As changes are made, file names can stay the same in Git.
There is no reason for the engineer to have to use the file
name to describe the state of the project (i.e. Apex_labeler_
DAH_Final.ACD). Git tracks the difference in each commit
for you.

•	 Tasks like creating and cloning repositories, committing,
pushing, and pulling are fast and usually only take a few
mouse clicks. The Git workflow is straightforward to execute.

•	 Git never deletes or overwrites files, so you can always
access your historical work if needed. If you accidentally
removed a rung and saved the file, you can simply revert to
an earlier version. It’s like a post-save undo!

•	 A persistent internet connection is not required. You can
work locally and then push changes at a later time.
This is quite helpful when making code changes on field-
based devices.

Why Hasn’t Git Been Widely Adopted by PLC
Programmers (Yet)?
We mentioned that a remarkable benefit of Git version control is
tracking when files change and showing what changed.

Git does this by displaying the contents of file versions and
highlighting the differences in a diffing process. Diffing is
relatively fast and straightforward because most traditional
software development uses text-based programming languages
(including Python, JavaScript, Java, C#, C, and C+ +).

An example of a Git “diff” is provided below. The red items
indicate lines of deleted code, and the green items represent
new code that has been added.

Intro to Git-Based Version Control for Industrial Automation9

W H I T E P A P E R

So to be clear, for most industrial controls
projects, Git can tell you when and who
changed files but not show you how those files
changed. The lack of this significant benefit has
slowed Git adoption.

Git visually displays
the changes
between commits
in text-based files.
Deleted code is
shown in red, while
additions are shown
in green.

Unfortunately, PLC programming evolved quite differently than
traditional software programming. While there are some text-
based languages for PLC Programming, most are done in visual
languages like Ladder Logic and Function Block Diagrams.
This problem was compounded because many PLC vendors
use different binary file formats. The inability of standard Git
to display these languages reduced much of its value for many
controls engineers.

Intro to Git-Based Version Control for Industrial Automation10

W H I T E P A P E R

Git relates that PLC
files have changed,
but does not visually
show differences
between file states.

Copia Automation to the Rescue
Copia Automation was founded to bring modern developer tools
to industrial automation professionals, unlocking the productivity
gains already realized in traditional software development. They
have started by solving the issue around visualizing and diffing
PLC code changes when using Gitbased source control.

Copia toolsets empower engineers to visualize PLC code in ladder
logic, function block diagrams, and structured text languages.
Copia can visualize code from Rockwell Automation® Studio 5000
Logix Designer®, Siemens®® TIA Portal, ABB® Automation Builder,
Beckhoff® TwinCAT®, Lenze® PLC Designer, Wago® e!COCKPIT,
CODESYS®, Schneider Machine Expert and Control Expert,
RSLogix 500, and STEP7 5.x and continually add new vendor
support. Teams can follow a consistent workflow no matter what
PLC vendor they choose.

It is essential to understand that Copia renders the PLC code in its
desktop app and web browser. This capability provides incredible
freedom to automation teams and accelerates code review and
discussions. Consider a junior engineer developing a section of
code that controls machine safety and finishes the task late in
the day. With only a web link, a manager who needs to review
the code can securely log in to the Copia repository from a home
computer and see the latest changes directly in a web browser.

Intro to Git-Based Version Control for Industrial Automation11

W H I T E P A P E R

Advanced Git Workflows to Unlock Greater Value
Although we described a basic Git workflow, Git supports
advanced workflows that add more control and improve
collaboration. These workflows are centered around concepts
known as Branching and Merging.

An easy way to understand the concept of branching is to
envision that every development project has a main branch where
the final error-free code is stored. Every commit represents a
vetted change that purposely improves the code.

Git allows you to create a parallel branch from the main branch
when adding new features and creating bug fixes. This branch
enables you to make changes without disturbing the main branch.
If your code changes are successful, you can merge the changes
back into the master branch; if they are not successful, you can
delete them.

Using this branching and merging process gives your team
greater control over when the main branch is changed. For
example, rules can be developed and enforced so only project
leads can merge code into the main branch, ensuring that all
changes are reviewed and approved.

Intro to Git-Based Version Control for Industrial Automation12

W H I T E P A P E R

Git branching can ensure
that any work in progress
(development branches)
can be completed and
reviewed before merging
with the production code
(main branch).

Development branches
can exist simultaneously,
allowing multiple
engineers to work
together on the same
code. Merging can
combine all work together
into the main branch.

Another benefit of this workflow is that it keeps the project
development history clean and easy to understand. Significant
changes to the production code are documented in the main
branch, while work in progress is tracked and stored within
development branches.

One of the most powerful aspects of Branching and Merging
is the ability for multiple developers to work on the same
project simultaneously. Each developer can create individual
development branches, and when their work is complete, they
can use the merge command to stitch their work together into
the main branch. Branching and merging allow you to effectively
add more engineers to a job to meet tight deadlines.

Intro to Git-Based Version Control for Industrial Automation13

W H I T E P A P E R

You might ask, “What happens if two engineers change the same
line of code and then merge — which change will be accepted?”

Git handles such situations with tools to resolve merge conflicts.
The project lead can see both changes and choose the better
one. This ability is another reason why visualizing differences
between commits is so essential during the code review process.

What is a Pull Request?
A service call with a PLC programmer is needed after machine
commissioning. The programmer can create a branch and work
on code. Upon completion, they can notify the project lead
that the branch is ready for review and merge. To do this, they
create a pull request.

A pull request occurs when you alert others about or request a
review of a change you’ve pushed to a remote repository. The
changes can be discussed, reviewed, and commented on, with
follow-up commits added before the changes are merged into
the main branch. The intent of the pull request is to call for a
merge into the main branch.

Branching and Merging, Tailor-Built for
Industrial Automation
We have stated that Copia Automation provides specific tools
to visualize ladder logic. The same visualization is used when
handling merge conflicts. Copia will display the rungs in questions
and prompt the decision-maker to choose which change is
preferred if multiple engineers change the exact area of code.

Intro to Git-Based Version Control for Industrial Automation14

W H I T E P A P E R

Copia understands that thorough code review, careful pull request
approval, and thoughtful merge conflict resolution are essential
for producing the highest quality code. Copia allows teams
to add comments at the rung level to discuss and document
decisions during a pull request. This context, captured throughout
a project’s lifecycle, can be utilized to train new programmers,
ensure consistency, and identify opportunities to improve.

How Git-Based Version Control Improves Business
Hopefully, at this point, you have a clear understanding of Git-
based version control and the features that are meaningful to
industrial automation professionals, specifically PLC programmers.
When we talk about the value to a business, the primary benefit
is centered around employee productivity and shortening
product timelines. With Git-based source control implemented,
all individuals will spend less time searching for the files and
investigating how files differ during their lifecycle. That time
savings can be reinvested in high-value work developing
innovative and high-quality code.

Intro to Git-Based Version Control for Industrial Automation15

W H I T E P A P E R

Branching and merging enable multiple team members to work on
the same automation project simultaneously. This practice has the
potential to be a substantial competitive advantage for a company
and ensure tight project deadlines are met.

The increased collaboration of Git-based version control also
enables the business to utilize their most skilled people more
efficiently. Senior control engineers can quickly review more junior
engineers’ work continuously via a web app and document their
feedback to help accelerate team training.

Improved code quality is another significant benefit of a Git-
based version control system. Using visual diffing capabilities
allows errors to be detected more readily. Formal pull request
procedures ensure that only authorized people can change the
production code.

Finally, a solid Git-based version control system can save a
business thousands, hundreds of thousands, or even millions of
dollars when dealing with unexpected operational problems. If a
major incident disrupts manufacturing, the last good version of
the code can always be found quickly and used to restore service,
minimizing downtime and empowering ongoing production.

Summary and Next Steps
Git is the ubiquitous source control solution for software
development, and its use has accelerated the speed at which
code is developed and deployed. It is proven to shorten
development timelines, increase quality, and maximize
operational uptime.

While the visual languages and proprietary formats of PLC code
have kept industrial automation developers from realizing the
same gains, Copia Automation has made tremendous strides
to remove these challenges. Now, IEC 61131-3 languages are
supported, and many can be visualized across vendors outside of
their development environments. While saving and storing code

Intro to Git-Based Version Control for Industrial Automation16

W H I T E P A P E R

is slightly different from the traditional archive folder workflow,
Git-based source control for industrial automation projects is
straightforward to learn and worth the benefits.

To get started with Git, you can find more information and
choose to download the open-source version of Git from
https://git-scm.com or try a free version of GitHub at
http://github.com/.

If you are considering Git for your PLC programming projects,
we strongly recommend requesting a demo of Copia Automation
at www.copia.io.

https://git-scm.com
http://github.com/
http://www.copia.io

Intro to Git-Based Version Control for Industrial Automation17

Git Glossary | Common Terms
Many people struggle with the Git terminology. Here is a quick glossary of terms to understand
before discussing basic Git workflows:

Repository (Repo)
A “repository” or “repo” is simply a folder
structure stored in Git. The “root” of a repository
is the base folder you want to store. A repository
is different from a typical directory only because
it stores context about the changes to the root
folder and all of the subfolders under the root.

Local Repository
A copy of the repository local to your
workstation.

Remote Repository
A copy of the repository that is centrally located
in the cloud or on a server. It is where you push
changes for collaboration and backup.

Branch
A branch is a diversion from the main working
project. By creating a new branch, the user can
create a new version of the repo or experiment
with changes that will not affect the base code.
The most recent commit is considered the
head of that branch. If you are happy with the
changes in one branch, you can merge those
changes into another branch.

Main (Master) Branch
Akin to the trunk of a tree from which all other
branches start. The main branch is where
the final, error-free code is stored. Every Git
repository has a main branch. You can create
new parallel branches off the main branch,
empowering you to do work without affecting
that mainline.

Clone
A local copy of an existing repository. The clone
can be made as a branch or downloaded to
your local repository from a remote repository.
You are required to create a clone to work on a
repository.

Commit
A commit is a recorded change to a file or set
of files. It is often thought of as a snapshot
or version of your repository. Commits only
create a snapshot in your local repository.
To synchronize these changes to the remote
repository, Push.

Pull Request (PR)
A pull request (PR) occurs when you alert others
about or request a review of a change you’ve
pushed to a remote repository. The changes
can be discussed, reviewed, and commented
on, with followup commits added before the
changes are merged into the main branch. The
intent of the pull request is to merge changes
into the main branch.

Push
A push is a command used to add your
commits from your local repository to a remote
repository.

Merge
Merging combines two branches. Typically,
commits made to a branch are merged into
the main branch after being reviewed via a
pull request. In some organizations, a project
maintainer or manager is responsible for
approving merges.

